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ABSTRACT

Several data compression schemes have been investigated

for reducing storage space and transfer time via a computer

network.

The primary goal of this thesis is to develop a new scheme
for data compression with compression ratio better than the
already existing schemes. The main approach adopted by this

research is a combination of dictionary look up and entropy

source coding.
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I. INTRODUCTION

This thesis presents an initial step in developing a new
data compression technique based in the dictionary approach.
"Data compression is the process of encoding a body of data D
into a smaller body n(D)."“[Ref. 7). If (D) can be decoded
back to D, without loss of information, then it is said to be
a reversible data compression. The situation in which some
acceptable approximation to D is obtained in the decoding is
known as non-reversible data compression.

Usually non-reversible algorithms are used for image
compression. This thesis considers only ASCII text compression
techniques.

The primary advantages to utilizing data compression
techniques are:

. Data storage space such as disks or tapes can be
greatly reduced with data compression. A compressed
file generally takes less storage space than an
uncompressed one. Also, compressed files can be
decompressed when users demand the original

copy.

. With data compression the same amount of

information can be sent over a network in much

less time than decompressed data. For data




communications, a sender can compress data before
transmitting it and the receiver can decompress
the data after receiving it.
The main parameters of interest in data compression are
compression ratio C(r) and compression speed. Compression

ratio is defined as

amount of compressed data

— x 100
amount of original data

Therefore, a compression ratio of 33% wonld mean that the
compressed text is one-third the size of the original text.
The compression speed is the average bytes compressed per
second. These two performance measures are often inversely
proportional to each other. The trade off between them depends

on the application requirements.




II. ALGORITHMS FOR DATA COMPRESSION

Data compression can be approached in three ways:
. The finiteness of symbols.
. The relative frequencies with which the symbols
are used.
. The context in which a symbol appears.
This chapter will examine in detail, each of these three

approaches to data compression.

A. THE FINITENESS OF SYMBOLS

One example of a finite set are the titles of the books
that exist in a library. Usually a title of book has about 20
characters. If the title is translated via the ASCII code, 140
bits (one character needs 7 bits) are required. However if
each title is given a sequence number, then the sender can
seud the sequence only and the receiver can map this number
into the appropriate title. The largest library in the world
has about 23° titles (The Library of Congress has 2%
titles) [Ref. 9]. Using sequence numbers instead of titles, the
necessary bits to transmit are only 30 instead of 140. With

this method we have a compressiocn ratic (30/14

[»]

V%100 = 21%.
Here we assume that the sender and the receiver have the same

translation table that translate the titles into numbers.




B. RELATIVE FREQUENCY METHODS
An important parameter of data transmission is the entropy
of a symbol S of an alphabet ZX(s,,S,,S;,...5.} given by the

formula: [Ref. 4]

H.(s) = Z p; log(1/p;) (1)

where p,,p,,...,p, are the probabilities of occurrence of each
symbol that contained in alphabet . When the radix r is not
given we assume r=2 and abbreviate H,(S) = H(S).

The importance of entropy is that for a source coding
there exists an inherent entropy that cannot be exceeded.
The notion of entropy provides a foundation for intuitively
reasonable facts such as:

. Random data cannot be compressed.

. Data that has been compressed by an optimal
compressor ( one that always achieves the entropy
of the source ) cannot be compressed further.

One cannot guarantee that a data compressor will
achieve any given performance on all data.

1. Huffman Coding Algorithm

The Huffman code uses the frequency of occurrence that

a symbol appears in the text. The most frequently used symbols
hhave a shorter binary pattern and less frequently symbols have
a longer pattern. For example, suppose we want to compress the

text:




""This i s a t e s t text "

The set of symbols and their relative frequencies are:

P(T) = 5/15 P(h) = 1/15 P(i) = 2/15 P(s) = 3/15
P(a) = 1/15 P(e) = 2/15 P(x) = 1/15.

T--> 5 oo 5 oo 5 oo 5Aoo ' 6 1 9 o
s==> 3 n 3 n 3 0 1 o 5 oo 61
i-->:"2 on 2 oo 3 n 3 1o 4 o

e-~-> 2 10 T2 on 2 oto 3

h--> 1 2 100 2 on

Xx—--> 1 oo 1 10

a-~-> 1 o

i

Figure 1 Huffman Coding

Each letter can be coded with the following bit pattern show
in Fig. 1, T = 00, s = 11, i = 011, e = 100, h = 101, x =
0100, and a = 0101. Note that the most frequent symbols are
translated with only two bits and less frequent ones, such as
¥, with four.

One disadvantage of the Huffman code and all codes that
based on the frequency of existence is that the source text

must be scanned twice before transmission begins. The first




pass determines the frequncies of occurrence of each symbol
and the second compresses the text.
2. Arithmetic coding

Arithmetic coding is based on the idea that each
symbol is not coded independently one after another as in
Huffman code, but coded as a portion of the real number line
between 0 and 1. Encoding a sequence of symbols ultimately
results in selecting a portion of the reals and transmitting
a number in that portion.

The operation of the algorithm can most easily be seen
with an example. Four symbols A, C, G, and T, occur with
frequencies 0.50, 0.30, 0.15, and 0.05, respectively. The sum
of the probabilities is 1. With this probability distribution,
the interval 0.00 to 0.50 is used for A, 0.50 to 0.80 for C,
0.80 to 0.95 for G, and 0.95 to 1.00 for T. Suppose that we
want to encode the symbol string CAT as in Fig.2. For the
first symbol C, the range is narrowed to the interval 0.50 to
0.80. As the algorithm progresses the interval is steadily
narrowed, requiring more and more bits provide the necessary
accuracy. The next symbol to encode is A, which utilizes the
inteval 0.50 to 0.65 of Fig. 2(b). If we expand this to unit
length as in Fig. 2(c) and select the T part from it, we get
the interval 0.6425 to 0.6500. If there were more symbols,

they would further subdivide the interval again as shown in




Fig. 2(d). The encoded result that is transmitted is any value
in the final range, for example 0.645.

When the receiver gets this value, it immediately sees that

T T 52

100 | 080 | 0.65 _ 0.65 _
0.95 ”'5// 0785 5// 0.6425 , |~

- P . ) _
2807 —{- 074 —f- 062> |- -
© ¢ o c
0507 —|- ossk—— 0575 |- —1{-
A ()ﬁ A4
0.00% —|— - awL-—-——~——omL—~ 06425

(a) (b} {c) {

Figure 2 Coding CAT using Arithmetic Encoding.

it lies between 0.50 and 0.80, indicating that the first
symbol must be a C. It then constructs the interval 0.50 to

0.80, just as the sender did, and sees that 0.645 lies between
0.50 and 0.65, meaning that the second symbol must be an A. In
this manner, the receiver decodes the message, symbol by

symbol.

C. RUN LENGTH ENCODING
This technique based on the probability of existence of a
symbol if the previous one is known. This method is primarily

used to encode long binary bit strings containing mostly




zeros. Each K-bit symbol tells how many zero bits occurred
between consecutive 1 bits. To handle long zero runs, two
symbols consisting of all 1 bits means that the true distance
is 2%¥-1 plus the value of the following symbol. Consider the

following binary bit pattern:

000100000100000010000000000000010000001000100000001101000001

which consists of zero runs of length 3,5,6,14,6,3,7,0,1, and
5. It can be encoded using 3-bit symbol as:

011 101 110 111 111 000 110 011l 111 000 000 001 101
1 1 1 1 1 b § 1 1 1l 1

The bit pattern 111 000 means that there are 7 zeros followed
by one 1. The bit pattern 000 indicates two consecutive ones.
Using this compression scheme it can be shown that a reduction

of approximatelly 32% is possible.

D. PROGRAMMED COMPRESSION

Programming 1is generally done by the applications
programmer or data management system. In formatted data files,
several techniques are used. Unused blank or zero spaces are
eliminated by making fields variable in length and using an
index structure with pointers to each field position.
Predictable field values are compactly encoded by way of a

code table - such as when warehouse names are given as integer




codes rather than an alphabetic English names. Each field has
its own specialized code table that deals with positional
redundancy. Since programmed compression cannot effectively
handle character distribution redundancy, it 1is a nice
complement to Huffman encoding.

Programmed compression has several serious disadvantages.
It introduces increased program development expenses; the type
of decompression used requires a knowledge of the record
structure and the code tables; the choice of field sizes and
code tables may complicate or inhibit later changes to the

data structure making the software more expensive to maintain.

E. ADAPTIVE CODE

The adaptive data compression algorithm is a scheme that
exploits locality of reference: words are used frequently over
short intervals and then fall into long periods of disuse.
There are many different algorithms like Lempel-Ziv [Ref. 13]
technique or L Z W [Ref. 11] technique or a Locally Adaptive
Data Compression Scheme [Ref. 2] by BENTLEY SLEATOR TARJAN and
WEI, and many others.

1. Locally Adaptive Data Compression Scheme

This technique is based on a simple heuristic for a

self organizing sequential search and on variable-length

encodings of integers. This scheme has the advantages that it

is simple, allows fast encoding and decoding, and requires




only one pass over the data to be compressed. (Huffman takes
two passes).

As mentioned earlier, this scheme is based on the
locality of reference meaning that in a certain text some
words appear with high frequency at one point of the text and
with low frequency in another point. Therefore this algorithm
is based on a self-organizing search which maintains a
sequential 1list of words with frequently accessed words near
the front. This data compression scheme uses a self-organizing
list as an auxiliary data structure and employs short encoding
to transmit words near the front of the list and long encoding
for the words at the end of the list.

Example:

Suppose we want to compress the message:

THEF CAR ON THE IEFT HIT THE CAR I _LEFT ©

‘The words are written with capital letters, separates with a
single space, and the end of the message is indicated by the
symbol 0).

The sender and receiver maintain identical word 1lists
using the " move-to-front " heuristic: After a word is used it
is deleted from its current position and moved to the front of
the list. This attempts to ensure that frequently used words

appear near the front of the list.

10




THE CAR ON THE LEET HIT THE ChAR I LEEFT
1. on 1.THE 1.LEFT | 1.HIT 1.TIHE 1.CRR 1.1 1.LEFT
2.CAR 2.0H 2.THE 2.LEFT | 2.HIT 2. THE 2.CAR 2.1
3.THE hﬁ— 3.CAR 3.on 3.THE 3.LEFT | 3.0IT 3.THE 3.CAR

4.CAR 4.0H q.0n 4.LEFT | 4.HIT 4.THE
5.CAR 5.CAR 5.0H 5.LEFT | 5.0IT
6.0n Vaon

Figure 3. The "move - to - front" word list.

After the construction of the word list as in Fig. 3,

the sender transmit the following message:

1 THE | 2 CAR } 3 ON } 3 | 4 LEFT ! 5 HIT | 3 | 5 | 6 1 | 5

— ~F

The list is initially empty. To transmit the word W, the
sender looks it up in the list. If it is present in position
L, the sender transmits L, which the receiver decodes by
writing the Lth element in the list; both then move W to the
front of their respective 1lists,shifting the words in
positions 1,2...L-1 to positions 2,3..L. If W is not in the
list of N words, the sender reacts as though it were in the
N+1st position and sends the integer N-1 followed by the word
W (which the receiver expects berause N+1 is greater than the

size of the current list); both sender and receiver then move

11




W to the front of their lists. Each word is transmitted as a
string of 1letters just once; subsequent occurrences are
encoded by integers. The integer encoding of a word is one
greater than the total number of different words that have
occurred since its previous appearance.

The above example illustrates the most important
property of the scheme: if a word has been recently used then
it will be near the front of the list and therefore have a
short decimal encoding. Because the integer L requires roughly
log,,L. characters to encode, frequent words are transmitted
with few characters. This scheme has many variations, one of
them is the L 2 W technique.

2. L 2 W Compression Algorithm
The L Z W algorithm is organized around a translation

table, referred to as a string table (instead of a word list

as in the previous scheme), that maps strings of input
characters into fixed-length codes.The use of 12-bit codes is
common. The L Z W string table has a prefix property in that
for every string in the table its prefix string is also in the
table. That is if string éM, composed of some string § and
some single character M, is in the table, then 6is in the
table. M is called the extension character on the prefix
string §. The string table in this explanation is initialized

to contain all single - character strings.

12




The L Z W string table contains strings that have been
encountered previously in the message being compressed. It
consists of a running sample of strings in the message, so the
available strings reflect the statistics of the message.

L Z W uses the '"greedy" parsing algorithm, where the
input string is examined character-serially in one pass, and
the longest recognized input string is parsed off each time.
A recognized string is one that exists in the string table.
Strings added to the string table are determined by this
parsing: Each parsed input string extended by its next input
character forms a new string added to the string table.Each
such added string is assigned a unique identifier, namely its
code value.

a. Compression.

The compression algorithm in each execution parsed
off an acceptable string §. The next character M is read and
the extended string &M is tested to see if it exists in the
string table. If it is there, then the extended string becomes
the parsed string § and the step is repeated. If M is not in
the string table, then it is entered, the code for the
successfully parsed string § is put out as comprcssed data,
the character M becomes the beginning of the next string, and
the step is repeated. An example of this procedure is shown in
Figures 4, 5, 6. For simplicity a three~chaiacter alphabet is

used.

i3




STRING TABLE ALTERNATE ‘LABLE
a 1 a 1
b 2 b 2
c 3 c 3 '
ab 1 1b o4
bha 5 2a 5
abc 6 4c ‘ 6
cb 7 3b 7
bab 8 5b 8
baba 9 Ba 9
aa 10 la 10
aaa 11 10a 11
aaaa 12 lla 12

Figure 4 The string and the alternate tables

The string table is initialized with three code
values for the three characters, shown above the dotted line.
Code values are assigned in sequence to new strings. The
alternate table 1is constructed from the code value of the
existing string and the new character M that was added.

The compression procedure is shown in fig. 5. The input
data, being read from left to right, is examined starting with
the first character a. Since no matching string longer than a
exists in the table, the code 1 is output for this string and
the extended string ab is put in the table under code 4. Then
b is used to start next string. Since its extension ba is not

in the table, it put there under code 5, the code for b is

14




output, and a starts the next string. This process continues

straightforwardly.

INPUT SYMBOLS a b ab ¢ ba bab a aa aaa

OUTPUT CODES

[
N
[
w
(8,4
@
d
[
(o]
p—
Pd

NEW STRING
ADDED TO
TABLE > 7 2

Figure 5 The compression procedure

For the decompression each code is translated by
recursive replacement of the code with the prefix code and
extension character from the string table ( Fig. 4 ). For
example code 5 is replaced by code 2 and a, and then code 2 is

replaced by b.

INPUT CODES 1 2 4 3 5 8 1 10 11
v v v v v v v v v
a b 1b ¢ 2a 5b a la 10a
v Y/ v v v
a b 2a a 1a
v v
b a

OUTPUT DATA a b ab ¢ ba bab a aa aaa

STRING 4 6 8 10
ADDED  —=-—— —mmem mmme oo
TO TABLE 5 7 9 11

Figure 6 The decompression procedure

15




This algorithm makes no real attempt to optimally
select strings for the string table or optimally parse the
input data. It produces compression results that, while less
than optimum, are effective. Since the algorithm is clearly
guite simple, its implementation can be very fast.

The principal concern in implementation is storing
the string table. To make it tractable,each string is
represented by its prefix string identifier and extension
character, so each table entry has fixed length.

b. Decompression.

The L Z W decompressor logically uses the same
string table as the compressor and similarly constructs it as
the message 1is translated. Each received code value is
translated by way of the string table into a prefix string
and extension character. The extension character is pulled off
and the prefix string 1is decomposed into its prefix and
extension. This operation is recursive until the prefix string
is a single character, which completes decompression of that
code Fig. 6. This terminal character, called the final
character, 1is the left-most character encountered by the
compressor when the string was parsed out.

An update to the string table is made for each code
received (except the first one). When a code has been
translated, its final character is used as the extension

character, combined with the prior string, to add a new string

16




to the string table. This new string is assigned a unique code

value, which is the same code that the compressor assigned to

that string. In this way, the decompressor incrementally

reconstructs the same string table that the compressor used.
3. The LZ77 OPM/L Text Compression Technique

The L277 is an OPM/L data compression scheme suggested

by Ziv and_Lempel. A slightly modified version of this scheme

improving the compression ratios for wide range of texts is

d-veloped by Storer and Szymanski_and called L2ZSS with very

fast decoding and comparatively ' _c..c¢ wmemory required for
coding and decoding.

An OPM/L (orijyinal rointer macro restricted to left
pointers) scheme replaces a substring in a text with a pointer
tc a previous (left)} occurrence of the substring in the text.
The pointer represents the position and size of the sub-string
in the original text. These restrictions make fast single-pass
decoding straightforward.

The LZ77 scheme restricts the reach of the pointer to
approximately the previous N characters, effectively creating
a "window" of N characters which are used as a sliding
dictionary. Pointers are chosen using a "greedy" aldorithm
which permits single-pass encoding.

The use of a window has several advantages:

17




The amount of memory required for encoding and decoding is
bound by the size of the window, and is typically no more
than 8 kbytes.
For many types of text, and for sufficiently large N, the
window is a good dictionary for the substring which
follows because it will usually contains the same
language, style and topic.

. All pointers can have fixed size fields.

An LZ77 encoder is parameterized by N, the size of the
"window", and F, the maximum length of a substring that may be
replaced by a pointer. Encoding of the input string proceeds
from left to right. At each step of the encoding a section of
the input text is available in a window of N characters. Of
these, the first N-F characters have already been encoded and

the last F characters are the "lookahead buffer®.

For example, if the string s = abcabcbacbababcabe...
is being encoded with the parameters N = 11 and F = 4 and
character 12 is to be encoded next, the window is:

5 6 7 8 9 10 11 12 13 14 15

b|lc|bja|ci{b|a b |a|bjc
i already encoded i lookahead buffer)

Initially the first N-F characters of the window are
(arbitrarily) blanks, and the first F characters of the text
are loaded into the lookahead buffer.

The already encoded par. of the window is searched to

find the longest match for the lookahead buffer, but obviously

18




cannot be the 1lookahead buffer itself. In the example, the
longest match for the 'babec'" is "bab", which starts at
character 10.

The 1longest match is then coded into a triple
<i,j,a>, where i is the offset of the longest match from the
lookahead buffer, j is the length of the mach, and a is the
first character which did not match the substring in the
window. In the example, the output triple would be < 2,3,'c!
>. The window is then shifted right j + 1 characters, ready
for another coding step.

Decoding 1is very simple and fast. The decoder
maintains a window in the same way as the enccder but, instead
of searching for a match in the window uses the triple given
by the encoder.

The main disadvantage of LZ77 is that, although the
encoding step requires 0{1) time, a straightforward
implementation can require up to (N=F) *F character
comparisons, typically on the order of several thousands. LZ77
is therefore best for the situation where a file is to be
encoded once (preferably on a fast computer) and decoded many
times, possibly on a small machine. Examples of these
situations are on-line help files and manuals, decentralized
databases, teletext, and electronic books.

Figure 7 1lists the performance of the different
compression schemes with the parameters of speed and memory

they use for the compression.
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LZSS| LZSS§ LZ77|LZ78 | LZW | Arith- |Adapt.

N-B192 |N=2048 | N=-9192 meiic | Huff.
Speed Encode | 18 | 52 | 24 [5300 5700 | - | 990
(characters
persecond) | DecCOde | 13600| 10900 | 15200 10060 {8400 | - | 1300
32
Memory |Encode | 8 | 2 | 8 [350 | 48 | 1400, 8

32
( kbytes) Decode 8 2 8 135 12 1400/ 8

Figure 7 Performance of different compression
schemes

One improved technique for reducing the time for
compression is suggested by T.C.BELL [Ref. 1] since time is
the only point that LZ77 or LZSS techniques fall short of the
other algorithms that shown in Fig. 7. The algorithm developed
by BELL is the "binary tree algorithm" that searches for the
longest match for a string.

Consider the same string as in LZ77 technique:
S=abcabcbacbababcabc. . . with parameters
N = 11 and F = 4.

5 6 7 8 9 10 11 12 i3 14 15

b c b a c b a b a b c

The lookahead buffer is defined as 1= X, = babc and

Xy = bcba Xy = cbac X, = bacb Xg ~ acba x, = chab x,, =

9 10
baba x, = abab. By inspection the longest match is x,, with
vector (1, x) = (10, 3) where 10 is the position of the match

string start and 3 is the characters that match the lookahead

buffer.
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The binary search algorithm start with sorting the x,
Xgr +++Xy With lexicographical order. So we have:
X, g Xq0 1 X, X Xy X,

abab acba baba babc bachb bcbhba cbab cbhac

The 1longest match for 1 should be found at the
beginning of x,, or x,. This happened because these two strings
are lexicographically adjacent to the lookahead buffer 1 and
are the two candidates for the longest match.

The basic construction of the tree is that for any
node x; all nodes in its left subtree are lexicographically
less than x, and all nodes in its right subtree are
lexicographically greater than x;. So with this way the tree
is constructed starting with x

st Xgr XpieoX9, Xgs 1l and then

X1y, and x, appear on the path to 1 as shown in Fig. 8.

Xd =DC
/x? = bac | x6 = cbad
| x8 = acbd | x9 = cbac

l | ! =babc |
Figure 8 Binary searching tree for longest match
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F. DICTIONARY APPROACH

This approach is based on the fact that the sender and the
receiver have the same dictionary of words, each word can be
encoded by its coding number. Each coded number can be
uniquely decoded. This method is called 8tatic Dictionary
Method and is developed by J.STORER [Ref. 7]. For this method
we assume that the message is English text and all the
substrings exists in the dictionary. This method is simple and
there is no danger that the encoder and decoder dictionaries
become different as a result of a noise in communication line,
allowing for much simple and efficient error detection and
recovery.

Also, in the same area of the dictionary approach exists
the Sliding Dictionary Method and the Dynamic Dictionary
Method that update the dictionary during the compression. With
these methods it 1is not necessary to require all the
substrings of the original text to exist in the installed
dictionary. If a new string is recognized by the sender it is
transferred and added to the dictionary of the receiver for

further use.
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III. DICTIONARY DATA COMPRESSION

A. OVERVIEW

The whole idea of this approach is based on the fact that
the necessary bits to represent an ASCII character are 8,
but with the same number of bits it is possible to represent
an integer up to 511. An English word with an average length
of 5 letters require 5*%*8 = 40 bits to represent using regular
ASCII code. However, if each word is represented with an
integer number, the required number of bits are only 16 for
65,532 words. This almost covers all common English words used
today.

The program developed in this study translates each word
into an integer based on a dictionary specified by the user.
The program compare the words of the text to be compressed,
with the words in the dictionary. The output is a file that
contains only numbers. The optimum condition occurs when all
the words in the text are in dictionary.

If a word does not exist in the dictionary, the output
of the program produces a list of new words used to update the
dictionary.

After the creation of the stream of number, the digits of

these numbers are compressed using HUFFMAN coding [Ref. 4].
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The digits that appeared more frequently in the compressed
file will be coded with shorter bit patterns than those with
less frequent digits. So the digit 1 and the BLANK are coded
with only two bits because they appear more frequently than
other digits. The other digits are coded with various length
bit pattern up to six bits.

The decompression uses an identical dictionary as that
used in the compression. Decompression converts the stream of
integers into English words. If a word is not in the current
dictionary, the program adds the word to the dictionary and
then makes the conversion.

The method of updating the dictionary of the receiver is
similar to the Dynamic Dictionary Method proposed by J.STORER.

[Ref. 7]

B. COMPRESSION PROGRAM

The program is written in C programming language and
consists of three parts: Input, Conversion, and Numerical
Translation.

1. Input Part

The input part of the program reads two files: the

dictiorury and the text that is to be compressed. It creates
two linked-lists. Each node in the list contains a word, and
a pointer that points to the next node. The function makelist
reads the files character by character and creates the list of

nodes. Two header nodes are created, headdic and headtext, to
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provide the head-and-tail information of the lists as seen in

Fig. 9.
Header node
head length tail
’ Nod
Head ki‘ ° - Tail
{ word | next “'> word | next] > [‘word ext’ —

- Length

N

Figure 9 Link list scheme for the Dictionary and
Text

2. Conversion Part
This conversion part is the most important of the
program because it translates the words to numbers. This task
is done by the function printlist. This function compares all
words of the dictionary with each word of the text. When there
1s a match, it prints the number of the node 1in the
dictionary. For example, if the word of the text is the same

as the third word in the dictionary, then the program converts
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the word to the number 3. An example of this appears in
Fig. 10.

If the word in the text does not exist in the
dictionary the program creates a new node in the dictionary
list and store the new word for future use. Additionally,
the program prints the new word into the compressed file
OUTPUT. This new word is then used for updating the dictionary
of the receiver that will perform the decompression. Usually
OUTPUT contains a few words at the beginning (new words) and
a stream of numbers that is the entire compressed text. The
distinction between words and numbers succeed with the symbol
d and is necessary for the decompression program to understand
where finished the new words and start the compressed text.

Another task of the function printlist is to update
the old dictionary, i.e Diction. Diction is then used for

future file compression.
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Figure 10 Conversion of words
into numbers

3. Numerical Translation
In the numerical translation part, there 1is a
function HOFF_Cr . aat reads the stream of numbers and counts
the frequen.y of each digit. The function BIT_COM then
translates each digit into a Binary Code.
Each code is unique and recognizable by the

decompression program. The codes for each digit are in

Fig. 11.

BLANC 00
1 10

2 111

3 0100
4 0110
5 c111

6 1190
7 1101

8 01011
9 010100
0 010101

Figure 11 Bit Conversion of Digits
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Finally,

before they are sent to the receiver.

all the encoded bits are grouped into bytes

An example of this

conversion and the composition of a character appears in

Fig. 12.
Setof numbers: 1 28 93
[1]o]ofoj 1 [1]1] 0] {1To] 1J1] o] o[ 0] 1 [o] 1] o] o] o Y o[ 0]
Ox8e Oxb1 0x44
Memory Contents
149a ox8e
149b Oxb1
149¢c Ox44
Figure 12 Conversion of numbers and compose of
character
Figure 12 shows how the program creates the eight bits

characters and stores them in memory. For example consider the
set of numbers 1 b 28 b 93,

The program puts into the first two digits of memory
149a, the bit pattern 10 (this comes from table in Fig. 11).
After the 1 follows a blank so the program puts into the next
two bits, the 00 pattern. Next the 2 is translated into 111.
The last bit of this eighth bit pattern is full with the first

bit of the pattern of conversion of the number 8 (In this case
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the pattern is 01011 so the last bit of the character is 0).
This explains why the character 0x8e is stored in the place

149a for this example.

C. DICTIONARY

The dictionary is an important part in the compression
process. The running time of the compression program and the
compression ratio depend on the way that the dictionary is
constructed. The use of an alphabetical dictionary is not a
good choice because the program may spend a lot of time
comparing the words of the dictionary until reaching the
match. Instead, a dictionary based on the usage frequency of
each word in the English text is used.

Based on the study of H.KUCERA [Ref. 5] of the most
frequently used words today, the top of the dictionary
contains words such as the, and a. This allows the program to
find the most common words quickly. With this kind of
dictionary, the time required for compression is significantly
reduced.

Moreover, it is interesting to investigate the number of
words that must be contained in the dictionary. As more words
are contained in the dictionary, the compression ratio
improved because the new words in the compressed file are few
(the words occupies a lots of bits). The ideal situation is a
dictionary which includes the entire set of the words in the

text which yields the maximum compression ratio.
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D. DECOMPRESSION PROGRAM

The decompression program is based on three linked-lists.
The first one contains the words of the dictionary, the second
has the new words that exists in the compressed file called
OUTPUT, and the third 1list contains the numbers that are
received instead of the whole text.

The words of the second 1list must be added to the
dictionary and the stream of numbers must be converted to the
original text.

The first and the second list are read with the function
makelist() as in the compression program. The third list
created with the function fscanf() reads from a file that
called intmed and contains only the numbers that are sent to
the transmitter. The nodes of this list are slightly different
than the nodes of the previous lists, because instead of the
word in the node, it contains an integer called num and a
pointer to the next node. This kind of node is called numnode.
The num in this special node is used for translation of the
compressed file into the original one.

The function printlist() adds new words to the dictionary
that are received with the compressed file, and converts the
numbers into English text. The dictionary created from the old
one with the addition of the new words called Dictiona. The
program also contains other functions such as the NewNode ()

which creates the new node for the new word to be added to the
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old dictionary, and the function create() which creates the
first node of each 1list.

The conversion of the characters that was sent in the
compressed file succeeded with the function Ahoff (). Actually
this function gets character by character from the compressed
file and feeds the function Bit_com() which makes the
conversion into the digits. The ahoff() function creates the
file intmed that contains the stream of numbers necessary for

the creation of the Numlist.

E. USAGE OF THE PROGRAM
1. Compression
For compression, run the executable file created by
the compilation of the .C program with two arguments. The
first argument is the dictionary and the second is the file to
be compressed. The result 1is a message that the compression
conplete, and the compressed file called OUTPUT. The next time
the program is run, it is necessary to use the file DICTION,
created by the first execution, as the first argument.
2. Decompression
For decompression, the executable file created by the
compilation of the .C decompression program is used. It also
requires two arguments. The first one is the name of the
dictionary file (must be the same as that used in the
compression part), and the second one is always the file

ouTPUT.
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The result is a message that decompression done, and
a file that called ORIGINAL which is the actual data file that
originally compressed. The next time the program is run,
DICTIONA, which is the up-to-date dictionary,is used as the

first argument.
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IV. STATISTICAL RESULTS -~ PERFORMANCE

A. GENERAL

This chapter contains some of the performance results of
the dictionary compression scheme. The following tests are
made to investigate the performance of the method.

1. 8ize of file vs. compression ratio

2. Comparison between different compression schemes

B. B8IZE OF FILE V8. COMPRESSION RATIO

In this test, different file sizes were examined. The
results are plotted in Fig. 13. This figure exibits a family
of curves, each representing a different percentage of
existence in the dictionary.

Curve A is the case where all the words of the text exist
in the dictionary. Curve B represents the case where only 75%
of the text words exist in the dictionary, curve C is the 50%
case and D curve is the case for 25%.

The vertical axis 1is the compression ratio and the
horizontal axis the size of files in bytes. The horizontal
axis is in log and the vertical is linear. The compression
ratios is calculated from the formula:

Comp.Ratio = ( 1 - comp.File/Origin.File )#*100

Another important parameter in these curves is the size of

the dictionary. Fig. 13 is based in a dictionary with less
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Figure 13 Compression ratio vs. size of file with
dictionary with less than 1000 words

than 1000 words.

Curve A represents the highest compression ratio,which is
expected since all the words exist in the dictionary and the
compressed file contains only numbers. As we move to the
curves B, C, and D, the compression is reduced and sometimes

even exibit negative values. This means that instead of
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compression the program provides expansion, i.e, the OUTPUT
file is bigger than the ORIGINAL text. This may occur for
small files (less than 2K) and also larger files (more than
40Kk) .

The explanation of this phenomenon is that in small files
when the dictionary has only 25% known words the program must
send the rest words of the text like new words, so the output
file is bigger than the original cne, hence the compression

ratio is negative. The same phenomenon happens with big files.

100 === i

| [~ CURVE A
| +-CURVE B
=« CURVE C
+-CURVE D

\ -
A ) RPN B B B S P

COMPRESSION RATIO

il |

1000 10000 100000 1000000
SIZE OF FILE

Figure 14 Compression ratio vs. size file with dictionary
with more than 3000 words
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Figure 14 shows the same family of curves as those of Fig.
13 but the dictionary contains more than 3000 words. The
difference between Figure 13 and 14 is that now ve must send
larger numbers for each word and the compression ratio is

slightly smaller than those in Fig. 13.

C. COMPARISON BETWEEN DIFFERENT COMPRESSION SCHEMES

Figure 15 shows the curves of the compression ratio
between three compression schemes: The COMPRESS of UNIX [Ref.
10), the Stacpack of Stac.INC (commercial program) [Ref. 8]

and the Dictionary scheme developed in this study.
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SIZE OF FILE

Figure 15 Comparison between the three schemes
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The horizontal axis is the size of the file in log and the
vertical axis is the compression ratio. The data for the
dictionary comes from a dictionary of more than 3000 words.

The dictionary contains all the words of the text.

D. NON-REVERSIBLE VERSION OF THE DICTIONARY PROGRAM

So far we have developed reversible one algorithm. It is
interesting to see the algorithm that is not reversible. This
algorithm does not count BLANK spaces in the text. Any numbers
of consecutive blanks are represented as one single blank.
Since this algorithm is not reversible we can significantly
increase the compression ratio as shown in Figures 16 and 17

for two different kinds of dictionaries.
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Figure 16 Compression ratio vs. size of file with
dictionary with less of 1000 words for non-reversible
algorithm
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The curves A, B, C, and D are for dictionaries that
contains 100%, 75%, 50%, and 25% percentage of words,
respectively. Fig. 16 is for a dictionary with less than 1000
words and the Fig. 17 is for a dictionary with more than 3000
words.

This kind of algorithm (don't-care-blank) could be used in
cases where blank spaces inside the text can be neglected. For
example, instead of 5 blank spaces in a row in the original
text the algorithm recovers only one. This algorithm gives a

better compression ratic than the reversible version.
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|

Figure 17 Compression ratio vs. size of file for
dictionary with more than 3000 words for non-reversible
algorithm
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The results of the comparison between the non-reversible
algorithm and the other compression programs is shown in Fig.
18. The horizontal axis is the size of the file in Kbytes and

the vertical the compression ratio.
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Figure 18 Comparison between the non~reversible algorithm
and the others compression schemes
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E. TIME IMPROVEMENT ALGORITHM

The main problem of the developed algorithm is the time
that spent the program searching the whole 1list of the
dictionary for matching with the words of the text. A version
of the algorithm that gives solution on this problem is in the
appendix A.

The solution is that instead of singly linked-list for the
dictionary the improved algorithm has 28 separate lists. The
26 are for the lower case letters (one for each letter), the
27th is for all the punctuation symbols like CR, SP, LF and
the 28th is for all the capital 1letters. In addition the
structure of each node contains a field, called val an integer
that is used to indicate the place that word is ordered in the
dictionary.

The program reads the dictionary and place each word and
its number in the proper list. Then the program starts reading
the text file to be compressed. It checks the first symbol of
each word, and start searching for match in the 1list that
contains this symbol. If it finds the same word it then prints
the number that represent this word in the dictionary. In case
that the word is new it adds the word in the list and print a
number that is larger than the last number of the dictionary

by one.

40




The rest of the algorithm about the numerical translation
remains the same. With this kind of algorithm the whole
execution time may be improved 27 times.

The algorithm could be further improved if instead of 28
list we may use 53 or more. For example we may separate
capital symbols, that is to have one list for each capital

letter. In addition the punctuation symbols may be subdivided.
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V. CONCLUSIONS

A. DATA COMPRESSION

The programs provided within Appendix A achieve the
primary goal of this thesis. The goal was to develop a new
data compression scheme different from those already existing,
with better results. This goal was met through the dictionary
approach and numerical translation. Algorithms for compression
and decompression were developed and implemented.
Implementation and successful testing of the algorithm verify

the accomplishment of the primary goal.

B. FUTURE RESEARCH

The opportunity exists for improving the developed scheme
not in the area of compression ratio, but rather in the area
of time. This could be done with a different organization of
the dictionary and the text. Instead of using multiple linked
lists for the dictionary, it could be organized in some kind
of tree so it is possible to further reduce the searching time

for matching.
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APPENDIX A: PROGRAM LISTINGS
A. COMPRESSION PROGRAM
/* This is the program that makes the COMPRESSION. */
/* It is the complete reversible algorithm */
#include <stdio.h>

#include <string.h>
#include <malloc.h>

#define MAXLEN 25

#define MALLOC(x) ((x *) malloc(sizeof(x)))

#define PUNCT (x) ((x=='\n')'i(x=='\t')}{(x==‘\r')}:(' 1<=x
&& X<='/") 11 (' '<=X && X<='@') | ("["<=x && x<=""") ]| (" {'<=X &&
x<='"1)) .

#define RECOG(X) (x=='7~A")

struct node

{
char *word;
struct node *next ;
}:

typedef struct node_type:

struct header

{
int length;
node_type *head, *tail;
)i

typedef struct header head_type;

head_type *header new, *headdic, *headtext;

FILE —_ *fopen(), *fp, *fout, *fdic, *fhoff, *fred,
*ftel, *fend;

FILE *ffin, *fwor, *fnum;

char *lala;

void print_list():

void hoff_com():

void bit_com();

void connect () ;

main (argc, argv)
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int argc:
char *argv(]:

{
head_type *create(), *makelist(), *makelistl():

headdic = makelist(argv[l]):
headtext = makelistl(argv([2]):

print_list():
hoff com() ;
connect () ;

printf ("\n\n Compresssion done!");
printf ("\n\n The compressed file called OUTPUTY) ;

exit(0);
}

head_type *makelist(filein)
char *filein;

{ .
register int c, length;
node_type *new, *NewNode():
char buffer[MAXLEN + 1];
head_type *headd;

head_type *create()

int p;

headd = create():
if ((fp = fopen(filein,"r")) == NULL)
{
printf("ERROR ! I can't open %s\n",filein);
exit(0);

}
strcpy (buffer, " ")
length = 0;
for(:;)
{
c = getc(fp):;
if '(c == EOF) break;
p = 1;
if ((060<=c && c<=071) | (0101l<=c && c<=0132) |} (01l41<=c
&& ¢c<=0172))
{

)
if ((PUNCT(c)) && (buffer[0] != ' '))

{

buffer[length++] = c;

buffer([length]= '\0';
new = NewNode();
new->next = NULL;
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if (headd->length == 0)
{

headd->head = new;
else

(headd->tail)->next = new;
headd->tail = new;

headd->length++;
new->word

*)malloc(sizeof (char)*strlen(buffer) +1);

strcpy (new->word, buffer);

strcpy (buffer, " ")
length = 0;
p = 0;

}
if ((PUNCT(c)) && (p == 1))

{

buffer{0] = c;

buffer[l]= '\0';

new = NewNode():

new->next = NULL;

if (headd->length == 0)
{

)

else

{

headd->head = new;

(headd->tail)->next = new;

headd->tail = new;
headd->length++;
new->word

*)malloc(sizeof (char)*strlen(buffer) +1);

)
}

strcpy (new->word, buffer);
strcpy(buffer, " ")
length = 0;

c = getc(£fp);

/* end for */

return (headd);

)

head_type *makelistl(filein)
char *filein;

{

register int c, length;

node_type
char
head_type

*new, *NewNode()
buffer [ MAXLEN + 1];
*headd;

(char

(char




head_type *create()

headd = create():

if ((fp = fopen(filein,"r")) == NULL)
{
printf ("ERROR ! I can't open %s\n",filein);
exit(0):
}
strcpy (buffer, " "y ;:
length = 0;
for(;::

{
c = getc(fp):
if (c == EOF) break:;
if ((060<=c && c<=071) ! (0101<=c && c<=0132) || (01l41l<=c
&& ©<=0172))
{

)
if ((PUNCT(c)) && (buffer[0] != ' '))
{ .
buffer{length]= '\0';
new = NewNode() 7
new->next = NULL:;
if (headd->length == 0)

buffer[length++] = ¢c;

headd->head = new;

(headd->tail)->next = new;

headd->tail = new;
headd->length++;
new->word = {char
*)malloc(sizeof (char)*strlen(buffer) +1);

strcpy (new->word, buffer);
strepy (buffer, " ")
length = 0;

A

if (PUNCT(c))

{
buffer{0] = c;
buffer(1l])= '\0';
new = NewNode():
new->next = NULL;
if (headd->length == 0)
{

}

else

headd->head = new;
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(headd->tail)->next = new;

headd->tail = new;
headd->length++;
new=->word = (char
*)malloc(sizeof (char) *strlen(buffer) +1):
strcpy (new->word, buffer):;
strcpy (buffer, " ")
length = 0;
}
} /* end for */
return (headd):
}
node_type *NewNode ()
{
node_type *newnode;
if (! (newnode = MALLOC(node_type)))

printf (" out of storage \n");
exit(1): -
)
return(newnode) ;

}

head_type *create()
{ if (header_new = MALLOC(head_type))
( header_new->length = 0:
header_new->head = header_new->tail = NULL;
re%urn(header_new);

)

void print_list()
{
int r, k, m;
node_type *dicptr, *textptr, *mew;

m 1;
k headdic->length;
fout = fopen(''wordout",6 "w+");
textptr = headtext->head;
for ( : textptr != NULL; )
{

dicptr = headdic->head;
for (; dicptr != NULL; )

{
if (strcmp((textptr->word), (dicptr->word)) ==
0) break;
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dicptr=dicptr->next;
}
if (dicptr == NULL) /* end of dic 1list? if so, add
it now */
{
mew = NewNode()
mew->next = NULL;
mew->word = (char
*)malloc(sizeof (char) *strlen(textptr->word)+1);
strcpy ( (mew->word) , (textptr->word)) ;
(headdic->tail)->next = mew; /* new tail */
headdic-~>tail = mew;
headdic->length++;
fprintf (fout,"%s ",mew->word) ;
printf ("%s ",mew->word);

)
textptr = textptr->next;

}
fprintf (fout,"~a");
printf ("~a");
fclose(fout); .
fhoff = fopen("hoffman","w+");
textptr = headtext->head;
for (; textptr != NULL; )
{
r=1;
dicptr = headdic->head;
for (; dicptr != NULL; )
{
if (strcmp((textptr->word), (dicptr->word)) ==
0)
{
fprintf(fhoff,"%d ",r);
printf("%d ",r);
break;
}
r++;
dicptr = dicptr->next;
)
_textptr = textptr->next:

)
fprintf (fhoff," ") ;
fclose(fhoff);
fdic = fopen(“diction","w+");
dicptr = headdic->head:
for ( ; dicptr != NULL; )
{
fprintf (fdic,"%s\n",dicptr->word):;
dicptr = dicptr->next;
)
fclose(fdic);
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}

void hoff com()

{

char ci

static int counter, tempa;

int k, s, totbit, siz ;

int b=0, a0=0, al=0, a2=0, a3=0, a4=0, a5=0,
a6=0, a7=0, a8=0, a9=0;

float pb=0.0, p0=0.0, pl1=0.0, p2=0.0, p3=0.0,
p4=0.0;

float p5=0.0, p6=0.0, p7=0.0, p8=0.0, p9= 0.0;

fred = fopen("hoffman","r+"):

for (:; :)

c = getc(fred);
if (c == EOF) break;
1 ]

if ( c == ) b++;

if (¢ == '0" ) al++;
if (¢ == '1' ) al++;
if (¢ == '2' ) a22++;
if (¢ == '3' ) a3++;
if (¢ == '4"' ) ad++;
if (¢ == '5' ) a5++;
if (¢ == '6' ) a6++;
if (¢ == '7' ) a7++;
if (¢ == '8' ) a8++;
if (¢ == '9' ) a9++;

}
fclose(fred) ;
s = (b+a0O+al+a2+a3+a4+aS+a6+a7+a8+a9);
totbit = (b*2 + a0*6 + al*2 + a2*3 + a3*4 + ad*4 + ab5*4
+ a6*4 + a7*4 +aB8*5 + asS*6);
printf ("Total bits: %d\n",totbit);

pb = (float) (b)/(float) (s)*100;
po0 = (float) (a0)/(float) (s)*100;
pl = (float) (al)/(float) (s)*100;
p2 = (float) (a2)/(float) (s)*100;
p3 = (float) (a3)/(float) (s)*100;
p4 = (float) (a4)/(float) (s)*100;
p5 = (float) (a5)/(float) (s)*100;
pé6 = (float) (a6)/(float) (s)*100;
p7 = (float) (a7)/(float) (s)*100;
p8 = (float) (a8)/(float) (s)*100;
p9 = (float) (a9)/(float) (s)*100;
siz = totbit/s + 1 ;

printf("siz %d\n",siz);
lala (char *) malloc(siz * sizeof(char)):
fred fopen("hoffman","r+");
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tempa =
counter

0x0000;
0;

fend = fopen("teliko","w+");

for (; i)

{

c = getc(fred);
if (¢ == EOF) break;
bit_com(c)

}
fclose(fend);
fclose(fred);
}
void bit_com(number)
char number:;
{
static int tempa, ccunter;
int mask = 0x0000, temp2 = 0x0000;
int cormask, bhof, m;
int acounter;
switch (numbef)
{
case ' ':

bhof = 0x0000;
acounter =14;

bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 2;
break:;

case '1':
bhof = 0x0002;
acounter = 14;
bhof <<= acounter;
bhof >>= counter;
if (counter != 0)
{ ,
0x8000;
1; m < counter; m++)

cormask
for (m
{

cormask >>= 1;

}
bhof = bhof ~ cormask:;

)
tempa = tempa | bhof;
counter = counter + 2;
break:

case '8':
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bhof = 0x000b;
acounter = 11;

bhof <<= acounter:;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 5;
break:;

case '2':
bhof = 0x0007;
acounter = 13;
bhof <<= acounter:;
bhof >>= counter;

if (counter != 0)
{
cormask = 0x8000;
for (m = 1; m < counter; m++)

{

cormask >>= 1;

}
bhof = bhof ~ cormask:;
}
tempa = tempa | bhof;
counter = counter + 3:
break:

case '7':
bhof = 0x000d;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
if (counter != 0)
{
cormask = 0x8000;
for (m = 1; m < counter; m++)

{

)
bhof = bhof ~ cormask;

)
tempa = tempa | bhof;
counter = counter + 4:;
break;

cormask >>= 1;

case '3':
bhof = 0x0004;
acounter = 12;
~hof <<= acounter:
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4:;
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break;

case '6':
bhof = 0x000c;
acounter = 12;
bhof <<= acounter;
bhof >>= counter:;
if (counter != 0)

{

}

0x8000;
1; m < counter; m+tt)

cormask
for (m
{

cormask >>= 1;

)
bhof = bhof ~ cormask:;

tempa = tempa | bhof;
counter = counter + 4¢;
break;

case '4':
bhof = 0x0006;
acounter = 12;
bhof <<=acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4;
break;

case

lgl:

bhof = 0x0014;
acounter = 10;

bhof <<= acrunter;
bhof >>= ccunter:
tempa = tempa | bhof;
counter = counter + 6;
break;

case

l5l:
bhof

= 0x0007;

acounter = 12;

bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4;
break:;

case

tpt.
bhof

= 0x0015;

acounter = 10;
bhof <<= acounter;
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}

if (
{

bhof >>= counter:;
tempa = tempa | bhof;
counter = counter + 6;
break;

}

counter >= 8 )

temp2 = tempa & Oxff00;

tamp2 >>= 8;

i1f (temp2 == Oxla) temp2 = 0Ox1;

if (temp2 == Oxffff) temp2 = Ox81;
*lala = temp2;
fprintf(fend, "%c", *lala):

lala++;

tempa <<= 8;

counter = counter - 8;

void connect ()
{ .
char c, 4;
ffin = fopen("output"”, "w+");
fwor = fopen("wordout","r+");
fnum = fopen("teliko","r+"):;
for (::)
{
c = getc(fwor):;
if ( ¢ == EOF) break;
putc(c,ffin);
)
for (::
{
d = getc(fnum);
if ( 4 == EOF) break;
putc(d, ffin);
}
fclose{ffin);

fclose(fwor);
fclose (fnum) ;
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B. DECOMPRESSION PROGRAM

/* This is the program that makes the DECOMRESSION. */

#include <stdio.h>
#include <string.h>
¢include <malloc.h>

#define MAXLEN 25

$define MALLOC(x) ((x *) malloc(sizeof(x)))

#define PUNCT (x) ((x=='\n')'i(x==’\t')}}(x=='\r'){}(' '<=x
§& X<='/') 11 (V' <=x && X<="@") || ("['<=X && X<=''"') || ('{'<=X &&
x<='"1))

#define RECOG(x) (x=="'~A")

struct node

{

char *word:
struct node, *next ;
) s

typedef struct node_type;

struct numnode

{

int num;
struct numnode *numnext ;
)i

typedef struct numnode_type;

struct header
{
int length;
node_type  *head, *tail;
}:

typedef struct header head_type;

struct numheader
{ — - '
int length:;
numnode_type *numhead, *numtail;
)3

typedef struct numheader numhead_type;

head_type *header_ new, *headdic, *headtext;
numnhead_type *header_numnew, *headnum;
FILE *fopen(), *fp, *fpl, *fp2, *fp3, *fdic, *fori,

*fred, *freg;
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void print_list():
void ahoff () ;
void bit_com():

main (argc, argv)

int argc;

char *argv(]:

{
int m = 0, puffer, length;
head_type *create(), *makelist():
numhead_type *numcreate() ;
node_type *listext;
numnode_type *vew, *NumNewNode():
char c’

headdic = makelist(argv([1]):
headtext = makelist (argv{2]):
fpl = fopen("codhof","w+");
fp3 = fopen(argv[2],"r"):
for(;:;
{ .
c = getc(fp3):
if ( ¢ == EOF )
{
break;
}
if (m != 0 )
{
putc(c, fpl)
m++;

~e

}
if( RECOG(c) ) m

It
=
e

)
fclose (fp3):;
fclose (fpl):

ahoff():

fp2 = fopen("intmed","r+"):
headnum' = numcreate():
length = 0;
while (fscanf(fp2,"%d",&puffer) != EOF)
{

vew = NumNewNode() ;

vew->numnext = NULL;

if (headnum->length == 0)

{

}

else

{

headnum->numhead = vew;
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(headnum->numtail) ->numnext = vew;
}
headnum->numtail = vew;
headnum->length++;
(vew->num) = puffer;

)
fcleose(fp2);

print_list():

printf ("\n\n Decompression done!");
printf ("\n\n The decompressed file called ORIGINAL");

exit(0):
}

head_type *makelist(filein)
char *filein;

{

register int c, length;

node_type >*new, *NewNode():;
char bufferMAXLEN + 1]:
head_type *headd;
head_type *create():
int p:
headd = create():
if ((fp = fopen(filein,"r")) == NULL)
printf ("ERROR ! I can't open %s\n",filein);
exit(0):
)
strcpy (buffer, " ")
length = 0;
for(;:)
{
c = getc(fp):;
p =1
if (c == EOF || c == '~a")
—
break:;
}
if ((060<=c && c<=071) ! (0101<=c && c<=0132) |} (01l41<=c
&& ©<=0172))

{

}
if (PUNCT(c) && (buffer[0) != ' '))

{

buffer(length++] = c;

buffer{length]= '\0';
new = NewNode();
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new->next = NULL;
if (headd->length == 0)
{

}
else

headd->head = new;

(headd->tail) ->next = new;

headd->tail = new;

headd->length++;

new->word = (char
*)malloc(sizeof (char) *strlen(buffer) +1):

strcpy (new->word, buffer):;

strcpy (buffer, " ")

length = 0;

p = 0;

}
if (PUNCT(c) && (p == 1))

buffer[0] = C;
buffer(1]= '\0';

new = NewNode()
new->next = NULL:;

if (headd->length == 0)

headd->head = new;

)

else
(headd->tail)->next = new;

headd->tail = new;
headd->length++;
new->word = (char
*)malloc(sizeof (char) *strlen(buffer) +1);

strcpy (new->word, buffer);
strcpy (buffer, " ")
length = 0;

— - ¢ =getc(fp):

}
} /* end for */
return (headd);

)
node_type *NewNode()
{
node_type *newnode;
if (! (newnode = MALLOC(node_type)))

printf (" out of storage mike \n"):
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exit(1):;
)
return(newnode) ;

)

numnode_type *NumNewNode ()
{
numnode_type *numnewnode;
if (! (numnewnode = MALLOC (numnode_type)))
{
printf (" out of storage \n");
exit(1):;
}
return (numnewnode) ;

}

head_type *create()
{
if (header_new = MALLOC (head_type))
{
header_new->length = 0;
header_new->head = header_new->tail = NULL;
}

return(header_new) ;

)

numhead_type *numcreate()

if (header_numnew = MALLOC(numhead_type))
{
header_numnew->length = 0;
header_numnew->numhead = header numnew->numtail =
NULL;
)
return (header_numnew) ;

)

void print_list()

{ L
int _ -° r;
node_type *dicptr, *textptr, *mew;
numnode_type *numptr;

textptr = headtext->head;
for ( ; textptr != NULL; )
{
/* if (strcmp(textptr->word," \0") == 0 )
{
textptr = textptr->next:
if ( textptr == NULL ) break;
) */
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dicptr = headdic->tail:
mew = NewNode();
mew->next =NULL;
(mew->word) = (char * ) malloc(sizeof(char) *
strlen(textptr->word)+1):
strcpy ( (mew->word), (textptr->word));
(headdic->tail)->next = mew;
(headdic->tail) = mew;
headdic->length++;
textptr = textptr->next;
}
numptr = headnum->numhead;
fori = fopen("original","w+");
for ( :; numptr != NULL; )
{
dicptr = headdic->head;
for ( r = 1; r <= headdic->length; r++ )
{
if ((numptr->num) == r )
{
fprintf (fori,"%s",dicptr->word):
printf("%s",dicptr->word):;
break;
}
dicptr = dicptr->next;
}

numptr = numptr->numnext;
fclose(fori);

fdic = fopen("dictiona","w+"):
dicptr = headdic->head:
for ( ; dicptr != NULL; )
{
fprintf (fdic, "%s\n",dicptr->word) ;
dicptr = dicptr->next;

)
fclose(fdic);

/* This the decompression nrogramm for the hoffman */

void ahoff ()
{
char c;
static int counter, tempa;
int k, met, s, totbit, siz ;
fred fopen("codhof","r+");

freg fopen("intmed","w ") ;
for (; i)




c = getc(fred):;
if (¢ == EOF) break:;
if (c == 0x1) c = Oxla;
if (c == 0xff8l1) c = Ox00ff;
bit_com(c):
}
fclose(freq);
fclose(fred);
)

void bit_com(number)

char number;

{
char temp2;
static char tempa, counter = 0;
int mask = 0x0080, m;

for (m=1; m <= 8; mtt)

temp2 = number & mask;
mask = mask/2;

/* printf ("temp2 %x mask %x\n",temp2, mask);*/
counter++;
tempa <<= 1;
if ( temp2 != 0) tempa = tempa +1;
temp2 = 0x0;
/* printf ("tempa %x counter %d\n",tempa, counter); */
if ( tempa == 0x0 && counter == 2)
{
printf (" ");

fprintf(freg," ");
tempa = 0x0000;
counter = 0;

}

if ( tempa == 0x2 && counter == 2)

{
printf("1i"):;
fprintf(freg,"1");

—* tempa = 0x0000;

counter = 0;

)

if ( tempa == Oxb && counter == 5 )
{
printf("8");
fprintf(freg,"8");
tempa = 0x0000;
counter = 0;

}
if ( tempa == 0x7 && counter == 3 )
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printf("2");
fprintf (freg,"2");
tempa = 0x0000;
counter = 0;
}
if ( tempa == 0xd && counter == 4 )
{
printf("7");
fprintf (freg,"7");
tempa = 0x0000;
counter = 0;
}
if ( tempa == 0x4 &§& counter == 4 )
{
printf("3");
fprintf (freg,"3");
tempa = 0x0000;
counter = 0;
)
if ( tempa == Oxc && counter == 4 )
{
printf("e");
fprintf (freg,"6");
tempa = 0x0000;
counter = 0O;
}
if ( tempa == 0Ox6 && counter == 4 )
{
printf ("4");
fprintf (freg,"4");
tempa = 0x0000;
counter = 0;
}
if ( tempa == 0x14 && counter == 6 )
{
printf("9");
fprintf(freg,"9");
tempa = 0x0000;
. ~" counter = 0;
}
if ( tempa == 0x7 && counter == 4 )
{
printf ("5");
fprintf (freg,"s");
tempa = 0x0000;
counter = 0;
)
if ( tempa == 0x15 && counter == 6 )

{
printf("o");
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fprintf (freg,"o");
tempa = 0x000;
counter = 0;

}

C. TIME IMPROVEMENT ALGORITHM

/* This is the time improved program that makes the
COMPRESSION. */
/* 1t is the complete reversible algorithm */

#include <stdio.h>
#include <string.h>
#include <malloc.h>

#define MAXLEN 15

$define Nlist 29

#define TRUE 1

#define FALSE 0

#define PUNCT(x) ((x=='\n')!!(x=="\t')!!(x=="\r')!! (' '<=x &&
X<='/0) b (vire=x && x<= 1@') |1 ("['<=x && x<='V') (1 ('<=x &&
x<='"1"))

FILE *fid, *fword, *fhoff, *fdic, *fred, *fend, *ffin, *fwor,
*fnum;
char *lala;

struct node {
int val:;
char *word;
struct node *next;
)z
struct Hnode ({
int length;
struct node *head, *tail;
}s
/* list[] are head pointers to each list */
void hoff_com();
void bit_com():;
void connect();

main(argc, argv)
int argc;
char **argv;

{
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struct node *new, *newnode():
char buffer[MAXLEN]:;

struct Hnode *list[Nlist];
int i, index, ctr, v:

int j, FOUND, k, ¢, p, leng;
struct node #*ptr;

for (i=0; i<Nlist; i++)
{
if(list[i]=(struct Hnode *) malloc(sizeof(struct

Hnode)))
{ list[i]=->length=0;
list[i]->head=1ist[i]->tail=NULL;)
}
ctr=1;
v = 0;
fid=fopen(argv(1l],"r");
strcpy (buffer, " ")
leng = 0;
for(;:) {

c = getc(fid):
if (¢ == EOF ) break:

p =1;
if (v == 0)
{
if( 65< (int) c && (int) c <90) index = 28;
else(
if((int) ¢ <97 || (int) c > 122) index=27;

else index = (int) c - 97;
}
)
if ((060<=c && c<=071) )]} (0101<=c && c<=0132) || (0l41l<=c
&& c<=0172))

{
buffer[leng++] = ¢c;

v= 1;
}
if ((PUNCT(c)) && (buffer[0] != ' '))
(
buffer[leng] = '\0';

new=newnode () ;
new->val=ctr;
n e w -~ > w ord = ( c h ar
*)malloc(sizeof (char)*(strlen(buffer)+1));
strcpy (new->word, buffer);
if(list({index)->leagth==0) (/*first time*/
list[index])->length = 1;
list[index]->head =list[index]->tail =new;

else {
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list[index]->length++;
(list[index]->tail)->next=new;
list[index]}~->tail=new;

}
strcpy (buffer, " ")
leng = 0;
ctr++;
p=0;
v = 0;
} /* end if PUNCT(c) */
if ((PUNCT(c)) && (p ==1))
{
buffer([0] = c;
buffer(1l] = '\0';
new = newnode() ;
new->val=ctr;
new->word=(char
*)malloc(sizeof (char)*(strlen(buffer)+1));
strcpy (new->word,buffer) ;
if(list[index]->length==0) ({/*first time*/
list[index]->length = 1;
list[index]->head = list[index]->tail = new;
}
else {
list[index]->length++;
(list[index]~>tail)->next=new;
list[index)->tail=new;
}

strcpy (buffer," ")
leng = 0;
ctr++;

c = getc(£fid);
} /* end second if PUNCT(c) */
} /* end for */
fclose(fid):;

/* now done with the dictionary reading #*/
/* start to read the text to be compressed */

fid=fopen(argv{2},"r");
fhoff = fopen("hoffman","w");
fword = fopen("wordout","w"):;
v = 0;
ctr = ctr - 1;
strcpy (buffer, " ");
leng = 0;
for(::) {
c = getc(fid):
if (c == EOF) break;

if (v == 0)
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{
if (65< (int) c && (int) c <90) index = 28;
else {
if((int) ¢ <97 |} (int) c >122) index=27;
else index = (int) ¢ - 97;
)
}

if((060<=c && c<=071)!! (010l<=c && c<=0132) || (01l41l<=c
&& c<=0172))

{
buffer{leng++] = c;

v =13
}
if ((PUNCT(c)) && (buffer(0] != "' "))
{
buffer{leng] = '\0';

/* start searching */

ptr=list[index]->head’;

FOUND=FALSE;

while (ptr!=NULL && !FOUND) {

if(!strcmp (ptr->word,buffer)) ( FOUND=TRUE;
fprintf (fhoff,"%d ", ptr->val);
break;

}
else {ptr = ptr->next;)

)
/* if not FOUND */

if (!FOUND) (/* add to the output */
fprintf (fhoff,"%d ",++ctr);
fprintf (fword,"%s ", buffer);
new = newnode()
new->val = ctr;
new->word
*)malloc(sizeof (char) " (strlen(buffer)+1)):;
strcpy (new->word, buffer);
if(list[index] ->length == 0) {
list[index]->length = 1;
list{index]~>head = 1list{index]->tail

it

(char

it

new;
)
else {
list[index]->length++;
(list[index]->tail)->next = new;
list[index]->tail = new;
)
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strcpy (buffer, " ")
leng = 0;

v = 0;

index = 27;

)
if (PUNCT(c))

{
buffer[0]
buffer[1]

c;
l\ol;
/* start searching */

ptr=list[index]->head;

FOUND=FALSE;

while (ptr!=NULL && !FOUND) ({

if (!strcmp(ptr->word,buffer)) ( FOUND=TRUE;
fprintf(fhoff,"%d ",ptr->val):;
break;

}
else (ptr = ptr->next;)
}

/* if not FOUND */

if (!FOUND) (/* add to the output */
fprintf (fhoff,"%d ",++ctr):;
fprintf (fword,"%s ", buffer);
new = newnode();
new->val = ctr:

new->word = (char
*)malloc(sizeof (char) *(strlen(buffer)+1));
strcpy (new->word, buffer):;
if(list[{index]->1length == 0) {(
list[index]->length = 1;
list{index]->head = 1list[index]->tail =
new;
}
else {
list[index]->length++;
(list[index)->tail)->next = new;
list[index]->tail = new;
}
}
strcpy(buffer, " ") ;
leng = 0;

}
)
fprintf (fword,"~a");
fclose(fword) ;
fclose(fhoff);
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hoff_com():

connect () ;

printf ("\n\n Compression done!");

printf("\n The compressed file called OUTPUT\n"):;

)

struct node #*newnode()

{

struct node *tmp:;

if (! (tmp=(struct node *) malloc(sizeof(struct node))))
{printf ("out of the storage\n"); exit(1l):)}

tmp->next=NULL;

return(tmp) ;

)

void hoff com()
{
char c;
static int counter, tempa:;
int k, s, totbit, siz ;
int b=0, a0=0, al=0, a2=0, a3=0, a4=0, a5=0,
a6=0, a7=0, a8=0, ag9=0;
float pb=0.0, p0=0.0, pl=0.0, p2=0.0, p3=0.0,
p4=0.0;
float p5=0.0, p6=0.0, p7=0.0, p8=0.0, p9= 0.0;
fred = fopen("hoffman","r+"):;
for (:; i)
{
c = getc(fred):
if (c == EOF) break;
if (c == "' ') b++;
if (¢ == '0' ) a0++;
if ((c == '"1'" ) al++;
if ((c == '2' ) a2++;
if (¢ == '3'" ) a3++;
if (¢ == '4"'" ) a4d++;
if (¢ == '5' ) aS++;
if (¢ == '6' ) a6++;
if (c == '7' ) a7++;
if (c == '8' ) a8++;
if (¢ == '9' ) ag9++;
}
fclose(fred) ;
s = (b+a0+al+a2+a3+a4+aS+a6+a7+a8+a9);

totbit = (b*2 + a0*6 + al*2 + a2*3 + a3*4 + a4*4 + as*4
+a6*4 + a7*4

+a8*5 + a9*6);

printf ("Total bits: %d\n",totbit):
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pb = (float) (b)/(float) (s)*100;
p0 = (float) (a0)/(float) (s)*100;
pl = (float) (al)/(float) (s)*100;
p2 = (float) (a2)/(float) (s)*100;
p3 = (float) (a3)/(float) (s)*100;
p4 = (float) (a4)/(float) (s)*100;
p5 = (float) (aS5)/(float) (s)*100;
pé = (float) (a6)/(float) (s)*100;
p7 = (float) (a7)/(float) (s)*100;
p8 = (float) (a8)/(float) (s)*100;
p9 = (float) (a%9)/(float) (s)*100;

siz = totbit/s8 + 1 ;
printf("siz %d\n",siz):;
lala = (char *) malloc(siz * sizeof(char)):
fred = fopen("hoffman","r+");
tempa = 0x0000;
counter = 0;
fend = fopen("teliko","w+");
for (: )
{

c = getc(fred);

if (c == EOF) break:

bit_com(c);

fclose(fend) ;
fclose(fred) ;
}

void bit_com(number)
char number;
{
static int tempa, counter;
int mask = 0x0000, temp2 = 0x0000;
int cormask, bhof, m;
int acounter;

switch (number)
{
case ' !';
bhof = 0x0000;
acounter =14;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 2;
break;

case '1':

bhof = 0x0002;
acounter = 14;
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bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof:
counter = counter + 2;
break;

case '8':
bhof = 0x000b;
acounter = 11;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 5;
break;

case '2':
bhof = 0x0007;
acounter = 13;
bhof <<= acounter;
bhof >>= counter:;
tempa = tempa | bhof;
counter = counter + 3;
break:;

case '7':
bhof = 0x0004;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4;
break:;

case '3':
bhof = 0x0004;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4;
break;

case '6':
bhof = 0x000c;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4;
break:;
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case '4':
bhof = 0x0006;
acounter = 127
bhof <<=acounter;
bhof >>= counter;
tempa = tempa | bhof;
~ounter = counter + 4;
break:

case '9':
bhof = 0x0014;
acounter = 10;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa ) bhof;
counter = counter + 6;
break:

case '5':
bhof = 0x0007;
acounter = 12;
bhof <<= acounter:;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 4;
break;

case '0':

bhof = 0x0015;
acounter = 10;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa | bhof;
counter = counter + 6;
break:;

}

if ( counter >= 8 )

{

temp2 = tempa & oxffo0;

temp2 >>= 87

if (temp2 == 0xla) temp2 = OXx1;

if (temp2 == OX00ff) temp2 = 0x81;
*lala = temp2;
fprintf(fend,"%c",*lala);

lala++;

tempa <<= 8;

counter = counter - 87
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void  connect()

{
char c, d;

ffin fopen ("output", "w+") ;

fwor = fopen("wordout","r+");
fnum = fopen("teliko","r+");
for (::
{
c = getc(fwor):;
if ( ¢ == EOF) break;
putc(c,ffin);
}
for (;:
{
d = getc(fnum) ;
if ( 4 == EOF) break:;
putc(d, ffin) ;
)
fclose(ffin);

fclose(fwor) ;
fclose(fnum) ;

71




1.

2.

10.

11.

12.

13.

REFERENCES

Bell C. T., Better OPM/L Text Compression, IEEE
Transactions on Communication December 1986.

Bentley L. J., Sleator D. D., Tarjan E. R. and Wei K.

V., A_locally Adaptive Data Compression Scheme,
Communication ACM April 1986.

Cleary G. J. and Witten H. I., Data Compression Using

Adaptive Coding and Partial String Matching, IEEE
Transactions on Communication, April 1986.

Hamming W. R., Coding and Information Theory, Prentice
Hall 1986.

Kucera H., Francis W. N., Computational Analysis of
Present-Day American English, Brown University Press,
Providence, Rhode Island 1967.

Langdon Jr G. G., An Introduction to Arithmetic Coding,
IBM Res. Develop, Vol 28 No 2, March 1984.

Storer A. J., Data Compression methods and theory,
Computer Science Press 1988.

STAC ELECTRONICS INC. Carlsbad CALIFORNIA 92008.
Tanenbaum A. S., Computer Neiworks, Prentice Hall, 1988.

UNIX

Welch A. T., A Technique for High-Performance Data
Compression, IEEE June 1984.

Witten H. I., Neal M. R. and Cleary G. J., Arithmetic
Coding For Data Compression, Communication ACM June
1987.

Ziv I. and Lempel A., Compression of Individual

Sequences via Variable-Rate Coding, IEEE Transaction
on Information Theory September 1978.

72




